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T
he Lorenz curve was developed in 

1905 for the purpose of measuring 

relative inequality in income dis-

tribution. Since then, the curve 

has been widely used in welfare economics to 

calculate the share of national income earned 

by proportions of the population, as ranked by 

their relative incomes. The application of the 

Lorenz curve to portfolio risk management 

is rooted in its ability to measure the distri-

bution and variation of asset returns. In this 

article, I show how some recent quantitative 

risk measures can be derived from the Lorenz 

curve, in order to manage risk and construct 

efficient portfolios.

In risk studies, the analysis is based on 

the absolute Lorenz curve (hereafter referred 

to as the Lorenz), which ranks conditional 

expected returns with respect to the cumu-

lative probabilities of getting these returns. 

In risk analysis, the Lorenz originated from 

Shorrocks [1983], who used absolute curves 

to derive second-degree stochastic dominance 

(SSD) conditions. Most portfolio theory and 

risk management results derived from the 

Lorenz have appeared in the finance literature 

with respect to Gini’s mean difference (GMD) 

and the Gini index. Fisher and Lorie [1970] 

were the first to apply Gini statistics using 

the standard Lorenz curve to study the vari-

ability of single stocks and portfolios. Later, 

Shalit and Yitzhaki [1984] used the curve to 

characterize risky assets, apply Gini’s mean 

difference in finance theory, and derive the 

mean-Gini CAPM.

The Lorenz is also very useful for 

expressing safety-first risk quantile measures, 

such as value at risk (VaR) and conditional 

value at risk (CVaR), that have become very 

popular in the banking industry. This fea-

ture is particularly advantageous when the 

analyst does not need to specify a particular 

distribution function. Otherwise, VaR and 

CVaR measures are quite cumbersome to 

compute.

In this article, I obtain risk measures 

from the Lorenz by using discrete probabili-

ties, which are commonly available in finan-

cial data. The next article section presents the 

Lorenz and its relation to SSD. The following 

section discusses the Lorenz and its relation to 

GMD. Then, I show the link between VaR, 

CVaR, and the Lorenz. Finally, I present 

an investment example that shows how to 

manage portfolio risk with the Lorenz.

STOCHASTIC DOMINANCE 

AND THE LORENZ

The main advantage of the Lorenz in 

financial analysis lies in its simplicity as a tool 

to rank and evaluate risky assets according 

to stochastic dominance (SD). Hanoch and 

Levy [1969], Hadar and Russell [1969], 

and Rothschild and Stiglitz [1970] inde-

pendently developed SD rules that provide 
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portfolio efficiency under expected utility maximiza-

tion, but without resorting to specific utility functions. 

They obtain SD rules by comparing the cumulative 

probability distributions of asset returns. First-degree 

stochastic dominance (FSD) is designed for investors 

with increasing utilities who are either risk-averters or 

risk-lovers. Second-degree stochastic dominance (SSD) 

as mainly for risk-averse investors is the most common 

model used in portfolio selection. Using cumulative 

probabilities, SSD rules provide the necessary and suf-

ficient conditions under which all risk-averse expected-

utility maximizers prefer risky assets. Nonetheless, the 

optimal asset choice is more evident with the Lorenz 

than with the traditional SSD rules.

Consider two risky assets, A and B, whose returns 

=f 1,...,x ifor Ni

A
 and =f 1,...,x ifor Ni

B  are sorted from 

their lowest yields to their highest. Returns are distrib-

uted with probabilities qA(xA) and qB(xB), respectively, 

such that ≥( ) 0q x( i

A
 and ( ) , ( ) 0

1
q x( q x(i

A

i

N

i

B∑ = ≥1, ( )q(
=

 and 

∑ =
=

( ) 1
1
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i

N
. The cumulative probabilities are computed 
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q x( pi
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k
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i

k
 and ( ) 1,..., .
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B
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Following Levy [2006], we can state the SSD rules by 

comparing the areas under the cumulative probabilities, 

namely:

All risk averters prefer asset A to asset B if and only if

 
∑ ∑∑

=

for all , ,
1 1=

p∑∑ k N1= ,...,
i

k

i

B

i

k

 

(1)

Computing the areas under the cumulative probabili-

ties is not straightforward, as it must be done for all the 

probabilities and followed by a comparison between the 

cumulative areas. Following Shorrocks [1983], using 

the Lorenz to establish SSD involves comparing only 

between curves. For all risk-averse investors to prefer 

portfolio A over portfolio B, the Lorenz of A must lie 

above the Lorenz of B. In other words, asset A dominates 

asset B if and only if:

 
( ) ( ) for all p obabil t es 0 1,L ( p( pA B)p( ≥ ≤( ) for all probabilities 0L (L ≤ (2)

where L
A
(p) and L

B
(p) are the Lorenz curves for asset 

A and B, respectively, formulated using Equations (3) 

and (4) as follows:1

In Equation (3), the Lorenz is obtained by summing 

up the returns x
i
 times their probabilities q(x

i
) up to the 

counter k(p):

 
∑=

=

( ) ( ) f ll froff m 0 to 1
1

)

L p( x q x p) for alli

i

k p(

i

 

(3)

where the counter k(p) is obtained implicitly by:

 
∑

=

( ) f ll
1

)

p q∑= x) for alli

i

k p(

i

 

(4)

Equation (4) expresses the cumulative probability p 

that returns are less than a given value specified by k(p).

I shall now explain the Lorenz delineated in 

Exhibit 1. Cumulative probabilities are exhibited on 

the horizontal axis, indicating that returns are ranked in 

increasing value. On the vertical axis, we see cumulative 

rates of returns weighted by probabilities, as expressed by 

Equation (3). The Lorenz starts at the origin of axes (0,0) 

and accumulates the sorted returns multiplied by their 

probabilities, until all the returns are used up. Because the 

lowest returns can be losses, the Lorenz may result in neg-

ative values. The curve ends at the mean return E(x) on 

the parallel vertical axis, because at that point, all returns 

are used up and multiplied by their probabilities.

From its definition in Equation (3), the Lorenz 

captures the conditional expected return E(x|p) 

given the probability p since L(p) = E(x|p) ⋅ p where

( )
1

) ( )
E( x

1
p) ii

k p( q x(

p
i∑ =
 is the mean of returns when ranked 

returns add up to k(p). When all returns are accounted 

for, i.e., k(p) = N, the Lorenz at p = 1 is the unconditional 

mean return of asset E(x).

Now we can look at what can be gained by using 

the Lorenz in finance. The rationale for using the Lorenz 

in SSD is rooted in the manner by which the Lorenz 

characterizes risk and mean return of investments for 

risk-averse investors. Such investors have concave utility 

functions that express declining marginal utility. The hor-

izontal axis in Exhibit 1 shows the probabilities of asset 

returns, ranked from those generating the lowest returns 

with the highest marginal utility to those generating the 

highest returns with the lowest marginal utility. The 

ranking of asset returns is the only information needed to 

sort an asset according to decreasing marginal utility. This 

ordering is specified by the cumulative returns, multiplied 

by the probabilities of getting these returns. This is basi-

cally the Lorenz. The principle of distributing resources 

according to decreasing marginal utility or decreasing 

marginal product ensures that financial resources are allo-

cated optimally. Using the Lorenz to manage portfolio 
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risk guarantees that objective. Because the curve expresses 

asset behavior not as a function of returns over time, but 

as the occurrence of having lower and higher returns, it 

provides much more relevant information about risk and 

return than periodical charts do.

RISK AND GINI’S MEAN DIFFERENCE

Originally, Gini [1912] defined the mean differ-

ence as the expected distance between observation pairs 

as follows:

 
D | |1 2x|x| x−x| (5)

where x
1
 and x

2
 are independent replicates of the random 

variable x. When GMD is divided by the mean, it 

becomes the well-known Gini coeff icient, which is 

known to evaluate income inequality. GMD is also an 

attractive measure of risk, because it depends on the 

spread of the returns among themselves, and not on 

their deviations from a central value as the mean. The 

measure has many different representations and formula-

tions, most of which can be found in Yitzhaki [1998]. 

In finance and portfolio risk management, it is more 

convenient to use one-half of GMD, which is usually 

referred to as the Gini Γ. As shown in Equation (6), its 

formulation uses the covariance between the returns and 

the cumulative probabilities of getting these returns:

 
GMD/2 2cov[ , ]x p,Γ

 
(6)

Being a statistic, the Gini has some advantages, 

because it lets us express risk with a single number and 

construct optimal portfolios that are SSD. As I will show, 

an asset’s Gini can be obtained directly from its Lorenz.

Indeed, when investors analyze the features of risky 

assets, they would like to decompose the returns into two 

components: one that embraces only the risk of the asset, 

and the other only the safe return. With the Lorenz, this 

task is easily accomplished. To show this, I construct a 

virtual asset that has the same mean return as asset x, but 

has no risk whatsoever. For each probability the virtual 

safe asset always yields the same mean return E(x). This 

riskless asset is depicted in Exhibit 1 by its Lorenz as a 

straight line that originates at (0, 0) and ends at the mean 

(1,E(x)). This line is called the line of safe asset (LSA), 

because it expresses the expected return E(x) multiplied 

by the probability p.

We can now enunciate the risk of asset x as the 

difference between its LSA, which yields the expected 

E X H I B I T  1
The Lorenz
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return E(x), and the Lorenz of asset x. It is obvious that, 

for every probability p, investing in the risky asset earns 

the cumulative expected return along the Lorenz, while 

investing in the riskless asset earns a higher cumulative 

expected return along the LSA. The risk of the asset is 

quantified by the vertical differences between the LSA 

and the Lorenz. This area is calculated as the difference 

between the area below the LSA and the area below 

the Lorenz. Therefore, the farther the LSA is from the 

Lorenz, the greater the risk assumed by the asset. Because 

E(x)p is the LSA equation and L(p) is the Lorenz equa-

tion, the area between the two lines is one half the Gini, 

as shown here:

∑ ∑∑ = Γ
=

[ ( ) ] [ , ] 1
2

1 1==1

∑∑ E∑[ x) − p x= cov[ p
i

N

i

N

i

i

N

i

 (7)

From Equation (7), the Gini can be understood as the 

pure risk inherent in an asset and therefore can be used 

together with the mean to characterize investments. Since 

the mean and the Gini are statistics derived from the 

Lorenz, they can facilitate the ranking of risky assets. 

Indeed, using the Lorenz for SSD defines only a par-

tial ordering of investment opportunities. When Lorenz 

curves intersect, we cannot determine a clear dominance 

between risky assets, and therefore the relation between 

all the investments cannot be established. Sometimes a 

complete ordering is required, although these results can 

only provide the necessary conditions for SSD. This is 

the case when the mean and the Gini are used to establish 

necessary conditions for SSD. To clarify this argument, 

consider non-intersected Lorenz curves and their relation 

to SSD. If we choose a linear utility function to determine 

the optimal portfolio, a necessary condition for the risky 

portfolio to be preferred by all expected utility maxi-

mizers is that it is preferred by the risk-neutral investor 

whose marginal utility is a constant. As such, only the 

last data point on the Lorenz, which is the mean, is the 

relevant gauge for choosing among assets. This explains 

the first necessary condition for SSD: stating that the 

mean of the preferred asset is greater than the mean of 

the dominated asset.

The other necessary condition for SSD is that the 

area below the Lorenz of the preferred asset be greater 

than the area below the Lorenz of the dominated asset. 

This area is one-half the mean return, subtracted by 

cov[ , ].1
2 x p,Γ =  These two requirements explain the 

necessary conditions for SSD, using the mean and the 

Gini. As established by Yitzhaki [1982], these necessary 

conditions are expressed as

 

≥

− Γ ≥ − Γ

( ) ( )

( ) ( )

E( E(

E( E(

A B≥) (E(

A AΓ) B BΓ)
 

(8)

implying that, if portfolio A is SSD preferred to portfolio 

B, then the mean and the risk-adjusted mean return of 

A cannot be less than the mean and the risk-adjusted 

mean return of B, when risk is measured by the port-

folio’s Gini.2

THE LORENZ AND CVAR

As a popular measure of risk, VaR quantifies expo-

sure to risk as the amount of cash to be held in a safe 

asset to overcome a portfolio’s potential total loss. It is a 

safety-first risk measure defined as the quantile of a given 

probability p, formulated implicitly as the return VaR(p), 

such that

 

( ) ( )
1

)

p q VaR p(
i

k p(

i i) x)∑∑ ≤( )q x) ix)∑
















=  

(9)

As seen from Equations (3) and (4), VaR(p) is only 

one single element of the Lorenz that can be obtained 

directly from the cumulative probabilities p. It is sur-

prising that VaR is so prevalent in finance, as it lacks the 

following basic properties of a risk measure ρ(X) for it 

to be coherent (see Artzner et al [1999]):

(1) Translation invariance, ρ(X + R
F
) = ρ(X) – R

F
, 

where R
F
 is a safe return

(2) Subadditivity, ρ(A + B) ≤ ρ(A) + ρ(B)

(3) Positively homogeneity, ρ(λX) = λρ(X)

(4) Monotonicity X ≤ Y ⇒ ρ(Y ) ≤ ρ(X)

Indeed, unless the returns distribution is normal, 

VaR lacks coherence because it fails to satisfy the sub-

additivity axiom that would prevent risk reduction in 

portfolio diversification.

To circumvent VaR’s lack of coherence, finance 

researchers developed conditional value at risk (Rockafellar 

and Uryasev [2000], Acerbi and Tasche [2002]). The basic 

idea of this measure is to calculate CVaR(p) as the mean 

of all the quantiles below the  original VaR in the lower 
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tail of the cumulative probability distribution from 0 to 

p. In formal terms:

   

( )
1

( ) ( ) f ll ( )
0

)

CVaRVV p
p

VaR q( q x( pi

i

k p(

i i) for all q x(∑ ≤( ) ( ) for all ( )VaR( q( x(= i) for all x(∑
=  

(10)

By comparing Equation (3) and Equation (10), we see 

that CVaR is easily obtained from the Lorenz:

 

= −( )
( )

CVaRVV p
L p(

p  

(11)

Consider a specif ic probability α between 0 and 1. 

Exhibit 1 shows how CVaR(α) for the probability α 

is expressed by the slope of the straight line connecting 

the origin (0,0) to the point (α, L(α)). This slope can 

also be measured on the vertical axis at p = 1 by the seg-

ment from the horizontal axis, up to the point labeled 

CVaR(α). As such, it is easier to calculate CVaR for a 

given asset, because the technique is not restricted to 

specif ic probability distributions. Under these provi-

sions, CVaR is obtained from a specif ic value of the 

Lorenz, which is estimated by sorting and summing up 

the returns for a given dataset.

MANAGING RISKY ASSETS: 

AN INVESTMENT EXAMPLE

To show how the various risk measures are obtained, 

I calculate the Lorenz for various traded stocks. This is an 

easy task for a sample of discrete observations, because it 

involves only ranking returns in ascending order and then 

summing all the lower returns up to that observation for 

each given return.

To illustrate the relevance of the Lorenz in ranking 

securities with respect to risk and return, we use the 250 

daily returns of the 30 stocks of the Dow Jones Indus-

trials Average from January 3, 2012, to December 31, 

E X H I B I T  2
Lorenz Curves of 10 Select DJIA Stocks Using Daily Returns for 2012
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2012. We calculate the Lorenz curves for these 30 stocks 

as described in Equation (3), where the probability of 

occurrence is 1/250 for each return. For the sake of 

clarity, Exhibit 2 plots only 10 Lorenz curves. Now we 

can isolate the set of SSD-dominated stocks, which are 

the ones with the Lorenz curves lying on top of the chart. 

The set of efficient stocks include JNJ, KO, IBM, and 

PFE, whose Lorenz curves form the non-dominated set. 

The worst stocks, according to SSD, are the ones lying 

on the bottom of the chart. These include AA, HPQ, 

CAT, and CSCO. Not only the position of the Lorenz 

curves is relevant, but also whether or not the curves 

intersect.

The goal now is to calculate the stocks’ statistics 

from the Lorenz. The last value on the curve is the stock’s 

mean return. We obtain the Gini as the area under a vir-

tual LSA and the Lorenz for each stock. Alternatively for 

the Gini, we can use Equation (7) and substitute the value 

i/N for the cumulative probability p. Exhibit 3 reports 

the statistics for the 30 DJIA stocks. The risk-adjusted 

mean return for each stock is shown as the mean minus 

the Gini. Two CVaRs are also exhibited: one for 5% 

and the other for 10%. We calculate CVaRs by using 

Equation (10) or extrapolate them from the Lorenz using 

Equation (11). Note that the CVaR at 5% is greater than 

the CVaR at 10%. We can also apply the mean-Gini con-

ditions for SSD, as expressed by the conditions of Equa-

tion (8). This is done on Exhibit 4, where the stocks are 

ranked first according to the mean and then according to 

the mean, less the Gini. The list shows the most desirable 

stocks, ranked according to the necessary conditions for 

SSD. Hence, the top stocks on the list have higher means 

and higher risk-adjusted means. As such, the list provides 

a complete ordering of stock choices, by weighing risk 

and mean return for all risk-averse investors.

Furthermore, we compare these results with the 

outcomes shown in Exhibit 4, by ranking CVaR from 

lower (safest stocks) to higher (riskier stocks). As the table 

shows, there is some correspondence between the Lorenz 

and the mean-Gini conditions. However, the comparison 

E X H I B I T  3
Statistics of Daily Returns for the 30 DJIA Stocks (2012)
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is not complete, because CVaR considers only low-return 

risks at a given probability, whereas Lorenz  statistics 

 consider risk for the entire distribution of returns and 

therefore provide much more information about risk and 

mean return.

CONCLUSION

This article has shown how the Lorenz can serve as 

a basic tool to measure the risk and return of individual 

assets and portfolios. Not only does the Lorenz comply 

with SSD, it also facilitates computation of the mean-Gini 

conditions for SSD when Lorenz curves intersect. Fur-

thermore, the Lorenz allows for calculating the CVaRs 

for all probabilities of occurrence. Hence, stocks and 

portfolios can be ranked in terms of risk and return by 

using only the Lorenz curves, without estimating prob-

ability functions.

ENDNOTES

1By using a continuous cumulative distribution function 

F(x) and its inverse, Gastwirth [1971] expressed the Lorenz 

with a single equation:

( ) ( ) for 0 11

0

L p( ( dt p

p

∫ ≤for 0( )1F (1 dt= ∫ ≤

2Yitzhaki [1982] also showed that the mean-Gini condi-

tions for SSD are sufficient whenever cumulative probability 

distributions functions intersect once at most.
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